Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 17(1): 86-96, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29090927

RESUMO

Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.


Assuntos
Vesículas Extracelulares/química , Proteínas de Membrana/isolamento & purificação , Polietilenoglicóis , Urina/citologia , Endocitose , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Ligadas a Lipídeos , Proteínas de Membrana/análise , Proteínas de Membrana/fisiologia , Octoxinol , Proteômica/métodos , Transdução de Sinais
2.
J Diabetes Res ; 2015: 289734, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874235

RESUMO

Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.


Assuntos
Nefropatias Diabéticas/metabolismo , Vesículas Extracelulares/química , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Adulto , Albuminúria/complicações , Albuminúria/metabolismo , Biomarcadores/metabolismo , Biópsia , Cistatina B/metabolismo , Diabetes Mellitus Tipo 1/urina , Feminino , Filtração , Taxa de Filtração Glomerular , Voluntários Saudáveis , Humanos , Falência Renal Crônica/metabolismo , Masculino , Mieloblastina/metabolismo , Fatores de Risco , Adulto Jovem
3.
Proteomics Clin Appl ; 9(5-6): 568-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25471207

RESUMO

PURPOSE: Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. However, Tamm-Horsfall protein (THP) is still a challenge for proteomic analysis since it can inhibit detection of low-abundance proteins. Here, we introduce a new approach that does not involve an ultracentrifugation step to enrich vesicles and that reduces the amount of THP to manageable levels. EXPERIMENTAL DESIGN: UEVs were dialyzed and ultrafiltered after reduction and alkylation. The retained fraction was digested with trypsin to reduce the remaining THP and incubated with deoxycholate (DOC). The internal peptidome and internal proteome were analyzed by LC-ESI-MS. RESULTS: A total of 942 different proteins and 3115 unique endogenous peptide fragments deriving from 973 different protein isoforms were identified. Around 82% of the key endosomal sorting complex required for transport components of UEVs generation could be detected from the intraluminal content. CONCLUSIONS AND CLINICAL RELEVANCE: Our UEVs preparation protocol provides a simplified way to investigate the intraluminal proteome and peptidome, in particular the subpopulation of UEVs of the trypsin-resistant class of exosomes (positive for tumor susceptibility gene101) and eliminates the majority of interfering proteins such as THP. This method allows the possibility to study endoproteome and endopeptidome of UEVs, thus greatly facilitating biomarker discovery.


Assuntos
Vesículas Extracelulares/metabolismo , Fragmentos de Peptídeos/urina , Proteoma/metabolismo , Urinálise/métodos , Humanos , Fragmentos de Peptídeos/isolamento & purificação , Proteoma/isolamento & purificação , Ultrafiltração
4.
Sci Rep ; 4: 7532, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25532487

RESUMO

Urinary extracellular vesicles provide a novel source for valuable biomarkers for kidney and urogenital diseases: Current isolation protocols include laborious, sequential centrifugation steps which hampers their widespread research and clinical use. Furthermore, large individual urine sample volumes or sizable target cohorts are to be processed (e.g. for biobanking), the storage capacity is an additional problem. Thus, alternative methods are necessary to overcome such limitations. We have developed a practical vesicle isolation technique to yield easily manageable sample volumes in an exceptionally cost efficient way to facilitate their full utilization in less privileged environments and maximize the benefit of biobanking. Urinary vesicles were isolated by hydrostatic dialysis with minimal interference of soluble proteins or vesicle loss. Large volumes of urine were concentrated up to 1/100 of original volume and the dialysis step allowed equalization of urine physico-chemical characteristics. Vesicle fractions were found suitable to any applications, including RNA analysis. In the yield, our hydrostatic filtration dialysis system outperforms the conventional ultracentrifugation-based methods and the labour intensive and potentially hazardous step of ultracentrifugations are eliminated. Likewise, the need for trained laboratory personnel and heavy initial investment is avoided. Thus, our method qualifies as a method for laboratories working with urinary vesicles and biobanking.


Assuntos
Bancos de Espécimes Biológicos , Micropartículas Derivadas de Células , Doenças dos Genitais Femininos/urina , Doenças dos Genitais Masculinos/urina , Preservação Biológica/métodos , Doenças Urológicas/urina , Adulto , Feminino , Humanos , Masculino
5.
Artigo em Inglês | MEDLINE | ID: mdl-25309511

RESUMO

Diabetes represents a major threat to public health and the number of patients is increasing alarmingly in the global scale. Particularly, the diabetic kidney disease (nephropathy, DN) together with its cardiovascular complications cause immense human suffering, highly increased risk of premature deaths, and lead to huge societal costs. DN is first detected when protein appears in urine (microalbuminuria). As in other persisting proteinuric diseases (like vasculitis) it heralds irreversible damage of kidney functions up to non-functional (end-stage) kidney and ultimately calls for kidney replacement therapy (dialysis or kidney transplantation). While remarkable progress has been made in understanding the genetic and molecular factors associating with chronic kidney diseases, breakthroughs are still missing to provide comprehensive understanding of events and mechanisms associated. Non-invasive diagnostic tools for early diagnostics of kidney damage are badly needed. Exosomes - small vesicular structures present in urine are released by all cell types along kidney structures to present with distinct surface assembly. Furthermore, exosomes carry a load of special proteins and nucleic acids. This "cargo" faithfully reflects the physiological state of their respective cells of origin and appears to serve as a new pathway for downstream signaling to target cells. Accordingly, exosome vesicles are emerging as a valuable source for disease stage-specific information and as fingerprints of disease progression. Unfortunately, technical issues of exosome isolation are challenging and, thus, their full potential remains untapped. Here, we review the molecular basis of exosome secretion as well as their use to reveal events along the nephron. In addition to novel molecular information, the new methods provide the needed accurate, personalized, non-invasive, and inexpensive future diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...